U.S. WORKS PROGRESS ADMINISTRATION

BIBLIOGRAPHY

OF

AERONAUTICS

Part 19 - Control Surfaces
Part 20 - Slots and Flaps

Compiled from the
INDEX OF AERONAUTICS

of the

INSTITUTE OF THE AERONAUTICAL SCIENCES

30 Rockefeller Plaza
New York City

The Index and Bibliographies have been prepared by workers under the supervision of the

U.S. WORKS PROGRESS ADMINISTRATION

John R. Palmer
Managing Project Supervisor
Project 465-97-3-21

1938
This bibliography is one of a series pertaining to aeronautics and is published by the U. S. Works Progress Administration with funds allotted to Project 465-97-3-21 for that purpose.

The project, sponsored by the New York City Department of Docks, receives the cooperation of the Institute of the Aeronautical Sciences which also directs the research and publishing staff workers.

Request for Additional References

The Institute of the Aeronautical Sciences invites corrections and criticism of the bibliographies and requests that additional references be forwarded to the Institute for inclusion in the final publications.

Distribution Requests

The bibliographies may not be sold. However, persons and organizations desiring copies may apply for them by letter, stating the use for which they are required. These requests will be considered in the order received. Should the supply be exhausted, such requests will receive first consideration when additional copies are published.

Robert R. Dexter
Aeronautical Engineer

Address all correspondence to:

John R. Palmer
Managing Project Supervisor
U. S. Works Progress Administration
5111 R.C.A. Building
New York City
ABBREVIATIONS

C.A.H.I. - Central aero-hydroodynamical institute, Moscow.

C.I.N.A. - Commission internationale de navigation aérienne, Genève.

D.V.L. - Deutsche versuchsanstalt für luftfahrt, Berlin.

R.A.F. - Royal air force (Great Britain)

R.A.S. - Royal aeronautical society (Great Britain)

Rend. Instituto sper. aer. - Rendiconto dell'Istituto, sperimentale aeronautico, Roma.

S.A.E. - Society of automotive engineers, New York.

V.D.I. - Verein deutscher ingenieure, Berlin.

Z.F.M. - Zeitschrift für flugtechnik und motorluftschifffahrt, München.
TABLE OF CONTENTS

Section I
BOOKS AND PAMPHLETS ON CONTROL SURFACES...1

Section II
PERIODICAL ARTICLES, BOOKS, PAMPHLETS, ETC., ON CONTROL SURFACES CLASSIFIED BY SUBJECT

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ailerons</td>
<td>13</td>
</tr>
<tr>
<td>Balancing</td>
<td>35</td>
</tr>
<tr>
<td>Control Systems</td>
<td>29</td>
</tr>
<tr>
<td>Elevator</td>
<td>45</td>
</tr>
<tr>
<td>Fin</td>
<td>53</td>
</tr>
<tr>
<td>Rudder</td>
<td>55</td>
</tr>
<tr>
<td>Stabilizer</td>
<td>63</td>
</tr>
<tr>
<td>General</td>
<td>66</td>
</tr>
</tbody>
</table>

Section III
BOOKS AND PAMPHLETS ON SLOTS AND FLAPS...69

Section IV
PERIODICAL ARTICLES ON SLOTS AND FLAPS...87

AUTHOR INDEX.........................103
BOOKS AND PAMPHLETS ON CONTROL SURFACES

Improvement of aileron effectiveness by the prevention of air leakage through the hinge gap as determined in flight, by Hartley A. Soulé and W. Gracey. Washington, 1938. 7 p. diagrs. (N.A.C.A. Technical notes no. 632)

Experimental research on the effectiveness of ailerons and elevators, by T. Ogawa and K. Ito. Tokyo, Tokyo imperial university, 1937. 72 p. illus., tables. (Aeronautical research institute report no. 151)

Flight investigation of the lateral control characteristics of short wide ailerons and various spoilers with different amounts of wing dihedral, by Fred E. Weick, Hartley A. Soule and Melvin N. Gough. Washington, U.S. Govt. print. off., 1935. 16 p. diagrs., illus., tables. (N.A.C.A. Report no. 494)

Wind tunnel research comparing lateral control devices, particularly at high angles of attack. Auxiliary airfoils used as external ailerons, by Fred E. Weick and Richard W. Noyes. Washington, U.S. Govt. print. off., 1935. 32 p. diagrs., illus., tables. (N.A.C.A. Report no. 516)

Wind tunnel research comparing lateral control devices, particularly at high angles of attack, by Fred E. Weick and Joseph A. Shortal. Washington, 1933. 13 p. diagrs., tables. (N.A.C.A. Technical notes no. 445)

Wind tunnel research comparing lateral control devices, particularly at high angles of attack. Handley Page tip and full-span slots with ailerons and spoilers, by Fred E. Weick and Carl J. Wenzinger. Washington, 1933. 20 p. diagrs., tables. (N.A.C.A. Technical notes no. 443)

Wind tunnel research comparing lateral control devices, particularly at high angles of attack. Tapered wings with ordinary ailerons, by Fred E. Weick and Carl J. Wenzinger. Washington, 1933. 14 p. diagrs., tables. (N.A.C.A. Technical notes no. 449)

Wind tunnel research comparing lateral control devices, particularly at high angles of attack. Various control devices on a wing with a fixed auxiliary airfoil, by Fred E. Weick and Richard W. Noyes. Washington, 1933. 16 p. diagrs., tables. (N.A.C.A. Technical notes no. 451)

Wind tunnel research comparing lateral control devices, particularly at high angles of attack. Various floating tip ailerons on both rectangular and tapered wings, by Fred E. Weick and Thomas A. Harris. Washington, 1933. diagrs., tables. (N.A.C.A. Technical notes no. 456)

A Design formula for ailerons, by Taitiro Ogawa. Tokyo, Tokyo imperial university, 1932. 15 p. diagrs., illus., tables. (Aeronautical research institute report no. 88)

Wind-tunnel research comparing lateral control devices, particularly at high angles of attack. Part III. Ordinary ailerons rigged up 10° when neutral, by Fred E. Weick and Carl J. Wenzinger. Washington, U.S. Govt. print. off., 1932. 12 p. diagrs., illus., tables. (N.A.C.A. Report no. 423)

Control of airplanes at low speeds by means of conventional ailerons. U.S. Department of commerce. Washington, U.S. Govt. print. off., 1931. 24 p. diagrs., illus., tables. (Aeronautics bulletin no. 15)

Effet d'un aileron à charnière sur les caractéristiques aérodynamiques d'un plan, par Milton J. Thompson. Travaux de l'Institut aérodynamique de Varsovie, 1930. 70 p. diagrs., illus., tables.

Determination of stability from flight test stick force data. Washington, U.S. Govt. print. off., 1929. 10 p. diagrs., illus. (Air corps information circular no. 625)

Wind tunnel tests on a model of a monoplane wing with floating ailerons, by Montgomery Knight and Millard J. Bamber. Washington, 1929. 13 p. diagrs., illus., tables. (N.A.C.A. Technical notes no. 316)

Full scale experiments with a Bristol fighter fitted with slots and flaps and slot and aileron control, by K. V. Wright. London, H.M. Stat. off., 1928. 6 p. diagrs., illus., tables. (A.R.C. R. & M. no. 1180)

The Longitudinal control of an aeroplane beyond the stall, by H.M. Garner and K.V. Wright. London, H.M. Stat. off., 1928. 8 p. tables. (A.R.C. R. & M. no. 1183) (investigation of an aeroplane in which elevators are controlled in different ways)

Researches on ailerons and especially on the test loads to which they should be subjected, by J. Sabatier. Washington, 1927. 25 p. illus. (N.A.C.A. Technical memorandums no. 598) (From La Technique aéronautique, Paris, Nov. 15-Dec. 15, 1926)

Wind tunnel tests on DH-4B model fitted with various fins and rudders. Washington, U.S. Govt. print. off., 1927. 11 p. illus. (Air corps information circular no. 603)

Wind tunnel test for elevator hinge moment coefficients on the horizontal tail surface no. 5, with balanced elevator, by P. M. Lyons. Washington, U.S. Govt. print. off., 1926. 3 p. diagrs., illus. (Air corps information circular no. 567)

Wind tunnel test of aileron characteristics as affected by design and by airfoil thickness. Washington, U.S. Govt. print. off., 1925. diagrs., tables. (U.S. Air corps information circular no. 535)

The Induction factor used for computing the rolling moment due to the ailerons, by Max Michael Munk. Washington, 1924. 5 p. illus. (N.A.C.A. Technical notes no. 187)

On the distribution of lift along the span of an airfoil with displaced ailerons, by Max Michael Munk. Washington, 1924. 8 p. diagrs. (N.A.C.A. Technical notes no. 195)

Rolling moment due to ailerons, by Max Michael Munk. Washington, 1924. 5 p. diagrs. (N.A.C.A. Technical notes no. 187)

Effect of airfoil thickness and plan form on lateral control, by H.I. Hoot. Washington, U.S. Govt. print. off., 1923. 11 p. diagrs., illus., tables. (N.A.C.A. Report no. 163) (test to determine the effectiveness of ailerons were made on six airfoils)

The Effect on rudder control of slip stream body and ground interference, by Henry I. Hoot and David L. Bacon. Washington, 1922. 7 p. diagrs. (N.A.C.A. Technical notes no. 110)

Some suggestions for improving airplane control at low speeds, by A. Fage. London, H.M. Stat. off., 1922. 6 p. diagrs., tables. (A.R.C. R. & M. no. 855) (devices to be used in conjunction with ailerons)

Balance portion for the rudder of the F.3 flying boat, by J. H. Parkin, H.C. Crane and S. L. Galbraith. Toronto, Toronto university, 1921. diags., illus. (School of engineering research bulletin no. 2, p. 111-14)

Rudder balance for F.3 flying boat, by J. H. Parkin, E. V. Ahara and J.S.E. MacAllister. Toronto, Toronto university, 1921. diags., illus. (School of engineering research bulletin 2, p. 118-24)

Équilibre automatique de l'aéroplane, par Joseph Rodet. Lyon, A. Rey, 1914. 30 p. illus.

Section II

PERIODICAL ARTICLES, BOOKS, PAMPHLETS, ETC.,
ON CONTROL SURFACES CLASSIFIED BY SUBJECT

AILERONS

Improvement of aileron effectiveness by the prevention of air leakage through the hinge gap as determined in flight, by Hartley A. Soulé and W. Gracey. Washington, 1938. (N.A.C.A. Technical notes no. 632)

Experimental research on the effectiveness of ailerons and elevators, by T. Ogawa and K. Ito. Tokyo, Tokyo imperial university, 1937. 72 p. illus., tables. (Aeronautical research institute report no. 151)

Wind tunnel research comparing lateral control devices, particularly at high angles of attack. Part VIII - Auxiliary airfoils used as external ailerons, by Fred E. Weick and Richard W. Noyes. Washington, U.S. Govt. print. off., 1935. 32 p. diagrs., illus., tables. (N.A.C.A. Report no. 510)

CONTROL SURFACES - AILERONS

Servo control system. Aviation engineering, New York, Apr. 1933, v. 8, no. 4, p. 20. diagrs.

Wind tunnel research comparing lateral control devices, particularly at high angles of attack. Part. VII - Handley Page tip and full span slots with ailerons and spoilers, by Fred E. Weick and Carl J. Wenzinger. Washington, 1933. 20 p. diagrs., tables. (N.A.C.A. Technical notes no. 443)

Wind tunnel research comparing lateral control devices, particularly at high angles of attack. Part VIII - Straight and skewed ailerons on wings with rounded tips, by Fred E. Weick and Joseph A. Shortal. Washington, 1933. 13 p. diagrs., tables. (N.A.C.A. Technical notes no. 445)

Wind tunnel research comparing lateral control devices, particularly at high angles of attack. Part X - Various control devices on a wing with a fixed auxiliary airfoil, by Fred E. Weick and Richard W. Noyes. Washington, 1933. 15 p. diagrs., tables. (N.A.C.A. Technical notes no. 451)

Wind tunnel research comparing lateral control devices, particularly at high angles of attack. Part XI - Various floating tip ailerons on both rectangular and tapered wings, by Fred E. Weick and Thomas A. Harris. Washington, 1933. diagrs., tables. (N.A.C.A. Technical notes no. 458)

A Design formula for ailerons, by Taitiro Ogawa. Tokyo, Tokyo imperial university, 1932. 15 p. diagrs., illus., tables. (Aeronautical research institute report no. 88) (Also Journal of the Society of naval architects of Japan, Tokyo, Oct. 1932, v. 50, p. 153-64)

Why they spin the way they do, by P. E. Hovgard. Aviation, New York, Apr. 12, 1930, v. 28, no. 15, p. 758-62. diagrs., illus. (Frise type ailerons)

The Tanager and some of its history, by Robert R. Osborn. Aviation, New York, Feb. 8, 1930, v. 28, no. 6, p. 242-48. diagrs., illus. (Floating ailerons described in detail)

Effet d'un aileron à charnière sur les caractéristiques aérodynamiques d'un plan, par Milton J. Thompson. Travaux de l'Institut aérodynamique de Varsovie, 1930. 70 p. diagrs., illus., tables.

Full scale determination of the motions at the stall of a Bristol fighter aeroplane with slot and aileron control on both planes, by K. W. Clark. London, H.M. Stat. off., 1930. 7 p. diagrs., tables. (A.R.C. R. & M. no. 1341)

Theoretical investigation of the effect of the ailerons on the wing of an airplane, by C. Wieselsberger. Washington, 1929. 25 p. diagrs. (N.A.C.A. Technical memorandums no. 510) (From Tokyo imperial university aeronautical research institute report no. 30)

Wind tunnel tests on a model of a monoplane wing with floating ailerons, by Montgomery Knight and Millard J. Bamber. Washington, 1929. 13 p. diagrs., illus., tables. (N.A.C.A. Technical notes no. 316)

Full scale experiments with a Bristol fighter fitted with slots and flaps and slot and aileron control, by K. V. Wright. London, H. M. Stat. off., 1928. 6 p. diagrs., illus., tables. (A.R.C. R. & M. no. 1168)

Dispositivi per il controllo laterale e l'aumento della portanza nell'ala dell'aeroplano e dell'uccello, di R. Giacomelli. L'Aerotecnica, Pisa, Apr., June, 1927, v. 7, no. 4, p. 167-204, 351-69. illus.

Researches on ailerons and especially on the test loads to which they should be subjected, by J. Sabatier. Washington, 1927. 25 p. illus. (N.A.C.A. Technical memorandums no. 398) (From La Technique aéronautique, Paris, Nov. 15-Dec. 15, 1926)

CONTROL SURFACES - AILERONS

The English stalling demonstration. Aviation, New York, May 25, 1925, v. 18, no. 21, p. 577; illus. (aileron slots and slotted flaps)

Wind tunnel test of aileron characteristics as affected by design and by airfoil thickness. Washington, U.S. Govt. print. off., 1925. diagrs., tables. (U.S. Air corps information circular no. 535)

The Induction factor used for computing the rolling moment due to the ailerons, by Max Michael Munk. Washington, 1924. 5 p. illus. (N.A.C.A. Technical notes no. 187)

On the distribution of lift along the span of an airfoil with displaced ailerons, by Max Michael Munk. Washington, 1924. 8 p. diagrs. (N.A.C.A. Technical notes no. 195)

CONTROL SURFACES - AILERONS

New fliers seen at the Paris show. Aero, St. Louis, Nov. 12, 1910, v. 1, no. 6, p. 9-10. diagrs., illus. (aileron design)

BALANCING

A Flight investigation of the reduction of aileron operating force by means of fixed tabs and differential linkage, with notes on linkage design, by Hartley A. Soulé and James A. Hootman. Washington, 1938. 12 p. diagrs., tables. (N.A.C.A. Technical notes no. 653)

CONTROL SURFACES - BALANCING

Pushing 'round a corner; Simmons-Brewster control, by Alexander Klemin. Scientific american, New York, May 1934, v. 150, no. 5, p. 259-60. (auxiliary balancing surfaces on the rudder, elevator or aileron)

Balanced controls. Flight, London, Jan. 26, 1933, v. 25, no. 1257, p. 77-78. diagrs., illus. (new aileron balance may be applicable to elevators and rudders)

Wind tunnel test for elevator hinge moment coefficients on the horizontal tail surface no. 5 with balanced elevator, by P. M. Lyons. Washington, U.S. Govt. print. off., 1926. 3 p. diagrs., illus. (Air corps information circular no. 567)

Balance portion for the rudder of the F. 3 flying boat, by J. H. Parkin, H. C. Crane and S. L. Galbraith. Toronto, Toronto university, 1921. diagrs., illus. (School of engineering research bulletin no. 2, p. 111-14)

Rudder balance for F. 3 flying boat, by J. H. Parkin, E. V. Anara and J. S. E. MacAllister. Toronto, Toronto university, 1921. diagrs., illus. (School of engineering research bulletin no. 2, p. 118-24)

CONTROL SURFACES - BALANCING

CONTROL SYSTEMS

Hydraulic controls; a complete system for operating both main and auxiliary services. Aircraft engineering, London, June 1938, v. 10, no. 112, p. 189-91. diagrs., illus.

CONTROL SYSTEMS

Improving the control system, by Dwight Huntington. Aviation engineering, New York, Mar. 1932, v. 6, no. 3, p. 15-17. illus.
CONTROL SYSTEMS

Single unit control, by Mario de Bernardi. Aero digest, New York, Oct. 1931, v. 19, no. 4, p. 72, 74. illus.

Determination of the maximum control forces and attainable quickness in the operation of airplane control, by Heinrich Hertel. Washington, 1930. 31 p. diags. (N.A.C.A. Technical memorandums no. 583) (From Z.F.M., München, Jan. 28, 1930, v. 21, no. 2, p. 36-45)

A New index to control cable endurance, by T. Ogawa and S. Suzuki. Tokyo, Tokyo imperial university, 1929. 15 p. diags., illus. (Aeronautical research institute report no. 49)

The Blondin control. Aeronautics, New York, Dec. 1912, Apr. 30, 1914, v. 11, 14, no. 6, 8, p. 172; 118. illus.

The New Wright aeroplane control. Scientific american, New York, Feb. 28, 1914, v. 110, no. 9, p. 188.

CONTROL SYSTEMS

Details of the new Curtiss rear control explained. Aero, St. Louis, Aug. 5, 1911, v. 2, no. 18, p. 391. illus.

Differentialsteuerung für drachenflieger, von Heinz Elpel.

Sketch illustrating the control on the Blackburn monoplane.

The Pfitzner monoplane. Aeronautics, New York, Mar. 1910, v. 6, no. 3, p. 82-85. diagrs. (Pfitzner system of control)

Construction aids. Aeronautics, New York, Jan. 1910, v. 6, no. 1, p. 8-9. diagrs. (descriptions and diagrams of control surfaces on various aeroplanes)

Experimental research on the effectiveness of ailerons and elevators, by T. Ogawa and K. Ito. Tokyo, Tokyo imperial university, 1937. 72 p. illus., tables. (Aeronautical research institute report no. 151)

Über die längenschwingungen eines flugzeugs mit freiem höhensteuer, von Hermann Blenk. Z.F.M., Berlin, July 14, 1933, v. 24, no. 15, p. 365-70. diagrs.

CONTROL SURFACES - ELEVATOR

Uber die längsstabilität eines flugzeuges mit losgelassenem höhensteuer, von Hermann Blenk. Z.F.M., München, Apr. 28, 1930, v. 21, no. 8, p. 189-96. diagrs.

Messung der höhensteuerkräfte und der längsstabilität eines flugzeuges vom muster Junkers F 13 GE, von Walter Hübner. (In Jahrbuch 1930 der D.V.L., München und Berlin, p. 638-44. diagrs., illus.)

Spinning characteristics of airplanes, by M. Watter. S.A.E. journal, New York, May, Aug. 1929, v. 24-25, no. 5; 2, p. 474-78; 527. diagrs., illus. (experiment with ailerons, rudders and elevators; suggested design for control surfaces)

The Longitudinal control of an aeroplane beyond the stall, by H. M. Garner and K. V. Wright. London, H. M. Stat. off., 1928. 6 p. tables. (A.R.C. R. & M. no. 1195) (investigation of an aeroplane in which elevators are controlled in different ways)

Study of horizontal tail surfaces of Consolidated XPT-3 (NY-1). Washington, U.S. Govt. print. off., 1928. 8 p. illus. (Air corps information circular no. 615)

Wind tunnel test for elevator hinge moment coefficients on the horizontal tail surface no. 5, with balanced elevator, by P. M. Lyons. Washington, U.S. Govt. print. off., 1926. 3 p. diagrs., illus. (Air corps information circular no. 567)

CONTROL SURFACES - ELEVATOR

Tests on a model of the dreadnought postal type monoplane, by E. Ower. London, H. M. Stat. off., 1921. 6 p. diagrs., tables. (A.F.C. R. & M. no. 780) (lift drag and pitching moments about C. G. were measured for various tail and elevator settings)

Correcting the longitudinal balance of JN-6H airplanes. Aviation, New York, June 1, 1920, v. 8, p. 357-58. illus.

Methods of correcting the longitudinal balance of JN-6H airplane. Washington, U.S. Govt. print. off., 1920. tables. (U.S. Air service information circular no. 27)

CONTROL SURFACES - ELEVATOR

Full-scale experiment on the moment about the hinge of the air forces on an elevator. Experiment on R.A.F. whirling arm. London, H. M. Stat. off., 1916. 5 p. diagrs., illus., tables. (A.R.C. R. & M. no. 284)

Wright improves elevator control. Aero and hydro, Chicago, Apr. 25, 1914, v. 8, no. 4, p. 40.

Experiments in the wind channel to determine forces and moments on parts of aeroplanes. London, H. M. Stat. off., 1913. 18 p. diags., tables. (A.R.C. R. & M. no. 74) (moment on elevator measured for purpose of design of pilots control, tests on model body with and without rudder and tail plane with elevator)

Nouveaux plans à l'échelle. L'Aviation industrielle et commerciale, Casteau, June 1912, v. 1, no. 6, p. 48.

CONTROL SURFACES - ELEVATOR

FIN

Wind tunnel tests of DH-4B model fitted with various fins and rudders. Washington, U.S. Govt. print. off., 1927. 11 p. illus. (Air corps information circular no. 603)

RUDDER

Two engines or one. Aeroplane, London, Aug. 16, 1933, v. 45, no. 7, p. 277-78, 80, 82, 84. (rudder control)

Servo rudder on the Boeing 80A. Aviation, New York, Sep. 1932, v. 31, no. 9, p. 396.

CONTROL SURFACES - RUDDER

Etude sur les gouvernails compensés, par Léon Kirste.

Full scale experiments with Servo rudders, by J. E. Serby.
(A.R.C. R. & M. no. 1514)

Further experiments on a model Fairey III F seaplane, by
1932. 6 p. diags. (A.R.C. R. & M. no. 1564)
(determination of fin and rudder rolling moment and
control due to rudder setting)

Querruderform und querruderwirkung, von Gotthold Mathias.
Jahrbuch des D.V.L., München und Berlin, 1932,
p. 32-34. diags.

Westland rudder bias gear. Flight, London, Dec. 4, 1931,
v. 23, no. 49, p. 1188. diags., illus.

A Relief gear for the pilot. A device for reducing the load
on the controls by permanently off-setting the rudder.
Aircraft engineering, London, Dec. 1931, v. 3, no. 34,
p. 313-14. diags.

De Arens overbreenging. Het Vliegveld, Amsterdam, Nov. 1930,

Structural strength requirements for civil aircraft, in
Great Britain and the U.S.A., by H. A. Mettam. Aeroplane,

no. 31, p. 950. (Also Aeroplane, London, Aug. 13,
1930, v. 39, no. 7, p. 417-16)

Die Lastverteilung über höhen- und seitenteilwerk eines
F 6 C-4 jagdflugzeuges bei aussergewöhnlichen flug-
bewegungen, von Richard V. Rhode. Z.F.M., München,

Amendments to air commerce regulations. Aero digest,

Directional stability of high speed aircraft, by W. G.
diags., tables. (A.R.C. R. & M. no. 1340) (tests
by several pilots using various conditions of rudder
cable rigging, and rudder hinge friction)

Maximum force on rudders, by F. B. Bradfield. London,
H. M. Stat. off., 1930. 4 p. diags., illus.
(A.R.C. R. & M. no. 1329)

Wind tunnel tests on DH-4B model fitted with various fins and rudders. Washington, U.S. Govt. print. off., 1927. 11 p. illus. (Air corps information circular no. 603)

The Effect on rudder control of slip stream body and ground interference, by Henry I. Hoot and David L. Bacon. Washington, 1922. 7 p. diagrs. (N.A.C.A. Technical notes no. 110)

Experiments in the wind channel to determine forces and moments on parts of aeroplanes. London, H. M. Stat. off., 1913. 19 p. diagrs., tables. (A. R.C. R. & M. no. 74) (moment on elevator measured for purpose of design of pilots control, tests on model body with and without rudder and tail plane with elevator)

CONTROL SURFACES - STABILIZER

Curtiss-Wright model 20 transport, by T. P. Wright. Aviation, New York, Aug. 1938, v. 37, no. 8, p. 28-29, 31, 42, 46, 78. diagrs., illus. (complete details of stabilizer and control)

Efficiency of tail plane behind wing of R.A.F. 34 section,
by D. M. Hirst and A. S. Hartshorn. London, H. M.
Stat. off., 1932. 4 p. diagrs., illus., tables.
(A.R.C. R. & M. no. 1478)

Effectiveness and balance of horizontal control surfaces,
by M. Pillard. Aviation engineering, New York,

Structural strength requirements for civil aircraft, in
Great Britain and the U.S.A., by H. A. Mettam. Aeroplane,
London, Oct. 29, 1930, v. 39, no. 18, p. 973-74, 976,
978, 980. diagrs.

Determination of the slope of the lift curve of horizontal
tail surfaces, by Benjamin F. Ruffner Jr. Aviation
diagrs. (effect of changing stabilizer angle)

The Effect of the various types of lateral stabilizers on
the take off of a flying boat, by L. P. Coombes and
diagrs., tables. (A.R.C. R. & M. no. 1411)

The Tail plane area to give longitudinal stability, by
v. 21, no. 26, 30, p. 522f-522h; 778a-778c.

Two practical methods for the calculation of the horizontal
tail area necessary for a statically stable airplane,
by Walter S. Dienl. Washington, U.S. Govt. print. off.,
1929. 19 p. (N.A.C.A. Report no. 293)

The Temple monoplane, by Frederick Knack. Aviation, New York,
Feb. 27, 1928, v. 24, no. 9, p. 512-13. diagrs.,
illus. (stabilizer adjustable in flight)

Study of horizontal tail surfaces of Consolidated XPT-3
8 p. illus. (U.S. Air corps information circular
no. 615)

Note on the longitudinal stability of aeroplanes with
special reference to tailplane design, by W. Laurence
v. 29, no. 179, p. 586-89.

Static test of the Curtiss PW-8 single seater pursuit plane,
by E. R. Weaver. Washington, U.S. Govt. print. off.,
1924. 24 p. diagrs., illus. (U.S. Air corps
information circular no. 492)

Damping coefficients due to tail surfaces in aircraft, by
diagrs. (N.A.C.A. Report no. 136)

GENERAL

Curtiss announces non-infringing control. Aero and hydro, Chicago, May 9, 1914, v. 8, no. 6, p. 69-70.
Ashmusen claims non-infringing control. Aero and hydro, Chicago, Apr. 25, 1914, v. 8, no. 4, p. 40.

Officers fly dual control Curtiss. Aero, St. Louis, Nov. 11, 1911, v. 3, no. 6, p. 125.

Section III

BOOKS AND PAMPHLETS ON SLOTS AND FLAPS

Interference of wing and fuselage from tests of 18 combinations in the N.A.C.A. variable-density tunnel combinations with split flaps, by Albert Sherman. Washington, 1938. 9 p. diagrs., tables. (N.A.C.A. Technical notes no. 640)

Full-scale span load distribution on a tapered wing with split flaps of various spans, by John F. Parsons and Abe Silverstein. Washington, 1937. 10 p. diagrs., illus., tables. (N.A.C.A. Technical notes no. 591)

Wind tunnel tests of wing flaps suitable for direct control of glide path angle, by Fred E. Weick. Washington, 1936. 5 p. diagrs. (N.A.C.A. Technical notes no. 552)

Wind tunnel tests on slotted flaps on a low wing monoplane; flap angle 0° to 90°, by D. L. Ellis and M. B. Morgan. London, H. M. Stat. off., 1936. (A.R.C. R. & M. no. 1735)

The Effects of equal pressure fixed slots on the characteristics of a Clark Y airfoil, by Albert Sherman and Thomas A. Harris. Washington, 1934. 7 p. plates. (N.A.C.A. Technical notes no. 507)
SLOTS AND FLAPS

Aerodynamic tests of a low aspect ratio tapered wing with various flaps for use on tailless airplanes, by Fred E. Weick and Robert Sanders. Washington, 1933. 6 p. diagrs. (N.A.C.A. Technical notes no. 463)

The Effect of split trailing edge wing flaps on the aerodynamic characteristics of a parasol monoplane, by Rudolf Wallace. Washington, 1933. 8 p. diagrs., tables. (N.A.C.A. Technical notes no. 475)

Flight tests to determine the effect of a fixed auxiliary airfoil on the lift and drag of a parasol monoplane, by Hartley A. Soule. Washington, 1933. 9 p. diagrs. (N.A.C.A. Technical notes no. 440)

Wind-tunnel research comparing lateral control devices, particularly at high angles of attack. Handley Page tip and full-span slots with ailerons and spoilers, by Fred E. Weick and Carl J. Wenzinger. Washington, 1933. 20 p. diagrs., tables. (N.A.C.A. Technical notes no. 443)

Wind tunnel research comparing lateral control devices, particularly at high angles of attack. Various devices on a wing with a fixed auxiliary airfoil, by Fred E. Weick and Richard W. Noyes. Washington, 1933. 18 p. diagrs., tables. (N.A.C.A. Technical notes no. 451)

Wind tunnel tests on model wing with Fowler flap and specially developed leading edge slot, by Fred E. Weick and Robert C. Platt. Washington, 1933. 10 p. diagrs., tables. (N.A.C.A. Technical notes no. 459)

The Aerodynamic characteristics of a model wing having a split flap deflected downward and moved to the rear, by Fred E. Weick and Thomas A. Harris. Washington, 1932. 7 p. diagrs., tables. (N.A.C.A. Technical notes no. 422)

The Effect of multiple fixed slots and a trailing-edge flap on the lift and drag of a Clark Y airfoil, by Fred E. Weick and Joseph A. Shortal. Washington, U.S. Govt. print. off., 1932. 8 p. diags., illus., tables. (N.A.C.A. Report no. 427)

Influence of the length of slots and flaps on the slotted wing work, by P. P. Krassilschikoff. Moscow, Scientific technical department of the Supreme council of national economy, 1932. 56 p. diags., illus., tables. (C.A.H.I. Transactions no. 133)

Preliminary investigation of rolling moments obtained with spoilers on both slotted and plain wings, by Fred E. Weick and Carl J. Wenzinger. Washington, 1932. 11 p. diags. (N.A.C.A. Technical notes no. 415)

Wind-tunnel tests of a Hall high-lift wing, by Fred E. Weick and Robert Sanders. Washington, 1932. 4 p. diags., illus., tables, plates. (N.A.C.A. Technical notes no. 417)

The Effect of slots and flaps on the lift and drag of the McDonnell airplane as determined in flight, by Hartley A. Soulé. Washington, 1931. 12 p. diagrs., illus., tables. (N.A.C.A. Technical notes no. 396)

Wind tunnel pressure distribution tests on an airfoil with trailing edge flap, by Carl J. Wenzinger and Oscar Loeser, Jr. Washington, 1929. 10 p. diagrs., illus., tables. (N.A.C.A. Technical notes no. 326)

Wind tunnel tests on airfoil boundary layer control using a backward opening slot, by Montgomery Knight and Millard J. Bamber. Washington, 1929. 6 p. diagrs., illus. (N.A.C.A. Technical notes no. 323)

Wind tunnel tests on an airfoil equipped with a split flap and a slot, by Millard J. Bamber. Washington, 1929. 6 p. diagrs., illus., tables. (N.A.C.A. Technical notes no. 324)

A Direct method of discriminating between steady and turbulent airflow over the wing surfaces in flight; applied to explore the region of effect of the slot on a Bristol fighter wing, by J.A.G. Haslam. London, H.M. Stat. off., 1928. 6 p. illus. (A.R.C. R. & M. no. 1209)
Full scale experiments with a Bristol fighter fitted with slots and flaps and slot and aileron control, by K.V. Wright. London, H.M. Stat. off., 1928. 6 p. diagrs., illus., tables. (A.R.C. R. & M. no. 1188)

Wing flap test of a DH-4B wind tunnel model, by P.M. Lyons. Washington, U. S. Govt. print. off., 1926. 9 p. diagrs., illus., tables. (Air service information circular no. 552)

Section IV

PERIODICAL ARTICLES ON SLOTS AND FLAPS

Avoiding the ground loop. Mechanical engineering, New York, June 1938, v. 60, no. 6, p. 468. diagr.

Motors for flaps and landing gear operation are light in weight. Aviation, New York, Mar. 1937, v. 36, no. 3, p. 45. illus.

De-buffeting. Flaps, full of holes like colanders are the latest american innovation. Aeroplane, London, June 17, 1936, v. 50, no. 1308, p. 767.

Les Ailes à extrados mobiles, par Alexandre Favre. Les Ailes, Paris, May 28, 1936, v. 16, no. 760, p. 5. diagrs., illus., maps.

Nuovo flap nel bordo d'uscita. Rivista aeronautica, Roma, May 1936, v. 12, no. 5, p. 249.

Application de la chronophotographie à l'étude de l'écoulement autour de profils hypersustentateurs, par André Fortier. La Technique aéronautique, Paris, Apr.-June, 1935, n.s., v. 26, no. 156, p. 121-25. diagrs.

SLOTS AND FLAPS

Sull'impiego di profili per alta portanza, di Ercole Trigona della Floresta. L'Aerotecnica, Roma, Sep. 1932, v. 12, no. 9, p. 1175-1203. diagrs., illus.

Versuche mit einem absaugeflügel, von Oskar Schrenk. Z.F.M.
ilus.

L'Ala a fessura e la sicurezza aerea. Rivista aeronautica,
Roma, Apr. 1931, v. 7, no. 4, p. 137-44. illus.

A Fixed front slot. Aviation engineering, New York, Apr.
1931, v. 4, no. 4, p. 29.

Portances élevées et profils hypersustentateurs, par Fr.
Haus. L'Aéronautique, Paris, Apr. 1931, v. 13, no. 143,
p. 125-31. diagrs.

A propos de l'aile à fente, réponse à M. Abel Verdurand,
par L. Constantin. La Nature, Paris, Jan. 15, 1931,
v. 59, p. 79-80. diagrs.

Effect of Handley Page slot on controllability and per­
formance of aircraft, by G.C.D. Russell. Rugby
engineering society proceedings, Rugby, England, 1930-

L'Aile à fente et la sécurité en avion, par Abel Verdurand.
diagrs.

The Effect of a hinged flap on the aerodynamic character­
istics of an airfoil, by Milton J. Thompson. (In
Cinquième congrès international de la navigation
diagr.)

One consideration on slotted wing, by Y. Watanabe. Journal of
the Society of mechanical engineers of Japan, Tokyo, Sep.

Le Profil Villiers A-6 à fentes Handley Page. L'Aérophile,

Wing flaps on aircraft, by Norman Macmillan. Flight,

L'Aéronautique, Paris, Apr. 1930, v. 12, no. 131,
p. 137-38. diagrs., illus. (Abstract Mechanical engineer­
ing, New York, July 1930, v. 52, no. 7, p. 705.)

Handley Page slot and other devices to increase wing lift,
by Alexander Klemin. Aeronautics, Chicago, Mar. 1930,
v. 6, no. 3, p. 41-42, 54-55. diagrs., tables.
SLOTS AND FLAPS

Slots and flaps take the lead. Western flying, Los Angeles, Jan. 1930, v. 7, no. 1, p. 54-55, 134. illus.

Ranura de ala y seguridad de vuelo. Icaro, Madrid, Sep. 1928, no. 9, p. 279. illus.

The Slotted wing. Popular aviation, Chicago, June 1928, v. 2, no. 6, p. 64. illus.

Dispositivi per il controllo laterale e l'aumento della portanza nell'ala dell'aeroplano e dell'uccello, di R. Giacomelli. L'Aerotecnica, Roma, Pisa, Apr., June 1927, v. 7, no. 4, 6, p. 167-204; 351-369. illus.

AUTHOR INDEX

Abbott, Ira H. 71
Abraham, Martin 41
Ahara, E. V. 15, 38
Albuch, W. H. 45
Allpi, C. 90
Allward, George A. 36, 91
Alston, R. P. 20, 56, 75, 79
80, 91
Ames, Jr. Milton B. 1, 69
Anderson, Walter B. 47, 64, 90
Angeli, J. 93
Arjanikov, N. S. 78
Asano, T. 10, 29
Aster, F. 66
Bacon, David L. 13, 14, 32, 42
59, 85
Bairstow, Leonard 17, 18, 42
51, 52, 55, 61, 62
Bally, J. 39
Bamber, Millard J. 3, 5, 9, 22
28, 62, 69, 74, 77, 78, 80
Banki, Donat 52
Barnwell, F. S. 34
Barstow, Leonard 97
Batson, A. S. 2, 8, 12, 15, 16, 21
27, 30, 32, 33, 58, 59, 48, 50, 53
57, 70, 74, 75, 80, 82, 84
Beard, A. P. 2, 40
Bell, A. H. 75
Bell, Gardiner H. 66
Bell, J. W. 74
Bentley, E. N. B. 91
Berger, P. 97
Betz, A. 9, 10, 28, 30, 81, 84
Biechteler, Curt 4, 46
Black, Archibald 43
Blenk, Hermann 46, 47
Boname, Robert 93
Bonifacio, Ferdinando 92
Bottle, D. W. 73
Boulton, B. C. 100
Bradfield, F. B. 4, 5, 6, 7, 8, 9
10, 11, 12, 13, 14, 16, 22, 24, 25
26, 27, 29, 31, 32, 33, 37, 38, 48
55, 57, 58, 59, 81, 82, 83, 84
Bramson, M. L. 28
Branwell, F. H. 18, 51
Brockelhurst, R. 62
Brown, A. F. 71, 72, 73
Brown, G. C. 14
Brown, W. O. 48, 54, 59, 65
Bryant, L. W. 1, 16, 17, 18, 34
29, 50, 51, 54, 55, 61, 75, 85
Budig, Friedrich 81
Callen, C. 71, 75
Campbell, N. R. 18, 51, 54, 61, 85
Carafoli, E. 9, 10, 29, 54
Caygill, L. E. 18, 83
Chaplin, S. A. 78
Chapman, James K. 44
Chatley, Herbert 34, 52, 68
China, F. J. E. 85
Chu, Lynn 48, 64
Clark, K. W. 8, 9, 10, 27, 29, 73, 75
79, 81
Cleary, William C. 70
Clegg, A. W. 17, 34, 50, 54, 60
Cleveland, Reginald M. 94
Coales, J. D. 17, 29, 51, 60
Cohen, J. 72
Collar, A. R. 5, 56
Colt, G. H. 62
Constantin, L. 96
Coomes, L. P. 7, 64
Cosci, Domenico 95
Courtney, Frank T. 30, 53, 67
Cowley, William L. 4, 17, 22, 39
51, 60, 61, 85
Cox, H. R. 3, 22
Crane, H. C. 15, 38
Crowe, J. H. 23
Curtis, W. H. 72
Cushing, R. K. 72
Davies, E. 71
Davydow, Nicholas P. 37, 46
de Bernardi, Mario 41
de Bothezat, Georges 52, 53, 65, 66
de Rouge, Charles 65
Dearborn, C. H. 1, 18, 70, 72
Delano, James B. 69
Dickerman, F. N. 66
Diehl, Walter S. 1, 14, 19, 32, 36
47, 64
Dircilfeild, J. 44
Dodd, Maurice J. 61
Doetsch, H. 86
Dormoy, E. 48
Douglas, C. P. 12, 31, 83
Douglas, William D. 17, 34, 50
54, 60
Downs, Walter F. 40
Dryden, Hugh L. 6, 56
Ducout, S. 65
Dumas, Alexandre 48
Duncan, W. J. 4, 5, 6, 24, 56
Edelestein, Fritz 53, 66
Ellenberger, G. 20
Ellis, D. L. 4, 23, 56, 73
Elpel, Heinz 44
Eskin, Benjamin 37, 46
Esnault-Pelterie, Robert 62
État, A. 41
Faul, A. 90, 92
Evans, Stanley H. 84, 93, 94
Everling, E. 82
Fage, A. 14, 17, 22, 84
Fairbanks, E. V. 26
Fairthorne, R. A. 8, 27, 37, 53
88, 81
Falkner, V. M. 3, 21
Favre, Alexandre 89
Fortier, André 91
Fowler, Earlan D. 88
Frachet, André 97
Francis, E. H. 1, 2, 70
Freder, H. P. 19
Frazier, R. A. 4, 22
Fuchs, D. 87
Gaid, A. C. 1, 4, 55, 56, 57
Gallatil, S. L. 15, 56
Garner, H. M. 10, 11, 12, 20, 31
47, 56, 58
Gasser, Alfred A. 94
Gates, S. B. 50, 65, 72, 74, 75
88
Gauvin, William E. 71
Glacomelli, E. 29, 99
Gibon, Théodore 48
Gibson, W. G. 67
Glauert, H. 16, 17, 34, 50, 60, 65
82, 84
Goldthorpe, V. V. 76
Gorsky, W. 7, 37, 37
Gough, Melvin N. 2, 3, 4, 22, 40
72
Gracey, W. 1, 19
Gratiot, Robert 65
Greener, F. W. G. 81
Gregory, V. 35
Griffiths, E. A. 85
Gruschwitz, E. 76
Guglielmetti, Aldo 94
Hummel, H. J. 70
Gymnich, A. 99
Habinskaya, C. 2, 21
Hagg, A. E. 30, 48, 58
Hall, Randolph F. 87, 88
Hanks, G. A. 16, 54
Hanscom, Clarence D. 101
Hardy, J. E. 10, 29, 58, 82
Harper, Carl B. 97
Harris, R. G. 18
Harris, Thomas A. 3, 5, 7, 21, 24
25, 36, 69, 72, 74, 76
Hartley, J. H. 4, 23, 72
Hartshorn, A. S. 4, 8, 9, 11, 12
12, 23, 28, 30, 31, 64, 82, 83
Haslam, J. A. G. 80
Haus, Fr. 78, 86
Hazen, H. L. 40
Heald, R. H. 5, 8, 23, 27, 38
Heidelberg, V. 15, 60
Heinz, F. 55
Hertel, Heinrich 41
Higgins, George J. 10, 29, 31, 88
Hill, A. T. R. 11, 33
Hill, F. M. 14, 15, 39
Hirst, D. M. 6, 84
Hoff, Wilhelm 34
John, D. L. 39
Hollingdale, S. H. 70, 90
Holt, J. 143
Holtmann, Anton 34
Koot, E. I. 12, 14, 32, 89
Hootman, James A. 23
Hopkins, Lloyd 40
Horsfield, F. R. C. 7, 26
House, F. O. 69
Hovgaard, P. E. 26
Hughes, S. R. 33
Hübner, Walter 47, 63, 85
Huff, T. H. 67
Hutton, F. A. 20, 45, 56, 72, 74
Hurseter, Jerome Clarke 67
Huntington, Dwight 40
Irving, H. U. 2, 8, 12, 15, 16, 17
18, 1, 27, 52, 53, 34, 38, 39, 45
48, 50, 51, 54, 61, 70, 74, 75, 80
82, 84, 85, 90, 91
Ito, K. 1, 19, 45
Jacobs, Eastman N. 10, 29, 79, 80
81
James, Paul 67
Jarland, M. 24
Jennings, W. G. 8, 25, 27, 57, 77
95
Jones, B. M. 12, 31, 59, 60, 92
Jones, E. T. 9, 12, 28, 31, 72, 79, 80
81, 83
Jones, I. M. 75
Jones, R. 18, 42, 51, 61, 75
Jones, Robert T. 1, 21, 66, 60, 70
Jones, W. P. 8, 21
Joyce, Temple N. 22, 53, 94
Katzmey, Richard 80, 84
Kaul, H. W. 40
Keune, F. 89
Kiel, George 70
Kirkby, F. W. 73
Kirste, Léon 6,57,84
Kleinaeuchter, H. 45
Klem, Alexander 20,37,40
Klemin, Alexander 46,55,63,95,96
Knack, Frederick 64
Knight, Montgomery 8,9,27,28
Knoll, E. 3,56
Koning, C. 11,30
Koppen, Otto C. 45,83
Kramer, M. 88
Krauss, P. P. 77
Kubo, K. 2,61
Lacaine, J. 94
Lachmann, G. 36,45,57,82,84
Lainé, André 41
Lake, B. F. 41
Lansden, F. W. 17
Landells, A. 85
Le Page, W. Laurence 48,64
Lees, J. H. 71
Legrand, G. 36
Leiser, K. 36
Lepère, Georges 47
Lioyd, Herbert F. 68
Lock, C.N.H. 15,52
Lockyer, C.E.W. 10,58
Loesser, J. Oscar 80
Lombard, A.E. 56,91
Lunde, O. H. 99
Lyons, P.M. 12,38,48,83
Maas, H.J. Van der 11,30,46
MacAllister, J.S.E. 15,58
McAvoy, William H. 1,39,73
McCurdy, Mabel, B. 44
McMillan, G.A. 1,4,6,22,24,55
MacMillan, Norman 96
MacIne, Joseph 44
Maidens, A.L. 80,82
Maitland, C.E. 73,90
Mathies, Gotthold 26,57
Medvedeff, Nicholas J. 23,94
Meredith, F.W. 14,59
Merrill, Albert Adams 35,42
Metcalfe, Arthur G.B. 20,36
Metten, H.A. 26,46,53,57,64
Midwood, G.F. 6,7,25,26
Mignot, Henri 40
Miller, S.S. 45
Mock, R.M. 93
Molloy, Richard C. 87
Monish, Byron Harold 6,7,8,26
27,56
Monnin, Jean 20
Morgan, M.B. 73
Morse, A.L. 13,31
Munk, Max Michael 15,51,85,95
Nagle, F. 66
Naylor, J.L. 15,51,52,55
E1,62,85
Nazir, Phiroze P. 19,89
Neilson, A. I. 45,53,55,66
Nerken, Albert I. 2,61,66
Nimfähr, Raimond 68
Norton, F.H. 14,15,33,48,49,54
59,65
Noyes, Richard W. 3,5,6,22,24
25,74,76,77
Nutt, A.E. Woodward 2,20,45
56
O'Gorman, Mervyn 18,45,52,55
Ober, Shatswell 27
Oensteiin, C. L. 41
Ogawa, Taitiro 1,6,19,24,41,45
Ormerod, A. 77,78,79
Osborn, Robert R. 26
Ower, E. 16,33,54,38,49
Page, Frederick Handley 83,92
95,98,100,101
Page, Victor Wilfred 42
Paget, R.A.S. 43
Panetti, M. 91
Pannell, J.R. 18,51,54,61,85
Parkin, J. H. 15,58
Parkinson, J.B. 74
Parsons, John F. 70,80
Pearson, H.A. 1,19,71,72
Peatfield, J.L. 16,53
Penrose, H.J. 86
Perring, W.G.A. 81
Peseck, R. 40
Petersohn, E. 9,58
Pillard, Marcel 37,46,64
Pinkerton, Robert M. 78,79
Platt, Robert C. 2,20,71,72,76
Pleines, Wilhelm 24,77,78,91,92
Pollak, Robert 42
Powell, C. H. 85
Prie, R. 21,44,92,95
Pugsley, A.G. 3,4,19,22
Purcell, C. W. 80
Puvrez, Paul 81
Rabion, R. 92
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read, R. H.</td>
<td>7,64</td>
</tr>
<tr>
<td>Reed, W. D.</td>
<td>70</td>
</tr>
<tr>
<td>Reid, Elliott G.</td>
<td>92</td>
</tr>
<tr>
<td>Reid, H.J.E.</td>
<td>15,32,49,60</td>
</tr>
<tr>
<td>Reif, E. P.</td>
<td>18,51,52,61,62</td>
</tr>
<tr>
<td>Reynolds, R.</td>
<td>100</td>
</tr>
<tr>
<td>Rhone, Richard V.</td>
<td>48,57</td>
</tr>
<tr>
<td>Rivière, Pierre</td>
<td>68</td>
</tr>
<tr>
<td>Robins, E. T.</td>
<td>68</td>
</tr>
<tr>
<td>Roche, J. A.</td>
<td>11,38</td>
</tr>
<tr>
<td>Rodot, Joseph</td>
<td>18</td>
</tr>
<tr>
<td>Ronan, K. M.</td>
<td>67</td>
</tr>
<tr>
<td>Ruden, P.</td>
<td>71</td>
</tr>
<tr>
<td>Ruffner, Jr. Benjamin</td>
<td>64</td>
</tr>
<tr>
<td>Russell, A.E.</td>
<td>69</td>
</tr>
<tr>
<td>Russell, G.C.D.</td>
<td>26,96,97</td>
</tr>
<tr>
<td>Sabatier, J.</td>
<td>11,30</td>
</tr>
<tr>
<td>Sanders, Robert</td>
<td>75,77</td>
</tr>
<tr>
<td>Sbernadori, Paolo</td>
<td>98</td>
</tr>
<tr>
<td>Schmidt, H.</td>
<td>89</td>
</tr>
<tr>
<td>Schneider, C.</td>
<td>20</td>
</tr>
<tr>
<td>Schmitz, C.</td>
<td>87</td>
</tr>
<tr>
<td>Schrenk, Oskar</td>
<td>76,96</td>
</tr>
<tr>
<td>Schrenk, Otto</td>
<td>91</td>
</tr>
<tr>
<td>Scott-Hall, S.</td>
<td>9,82</td>
</tr>
<tr>
<td>Scrutton, C.</td>
<td>3,21</td>
</tr>
<tr>
<td>Scudder, N. F.</td>
<td>46,63</td>
</tr>
<tr>
<td>Seidman, Oscar</td>
<td>45,46,53,55,63</td>
</tr>
<tr>
<td>Serby, J.E.</td>
<td>6,36,57,70,74,88</td>
</tr>
<tr>
<td>Sezawa, K.</td>
<td>2,21</td>
</tr>
<tr>
<td>Shaw, W.R. Douglas</td>
<td>43</td>
</tr>
<tr>
<td>Sherman, Albert</td>
<td>69,74</td>
</tr>
<tr>
<td>Shortal, Joseph A.</td>
<td>2,3,5,7</td>
</tr>
<tr>
<td></td>
<td>20,21,23,25,71,73,77,78</td>
</tr>
<tr>
<td>Silverstein, Abe</td>
<td>70</td>
</tr>
<tr>
<td>Silvestri, Armando</td>
<td>90</td>
</tr>
<tr>
<td>Simmons, O.E.</td>
<td>14,32,59</td>
</tr>
<tr>
<td>Simons, L.F.G.</td>
<td>17,39,51,60</td>
</tr>
<tr>
<td>Smith, Richard Herbert</td>
<td>11,48</td>
</tr>
<tr>
<td>Smyth, E.</td>
<td>72,75</td>
</tr>
<tr>
<td>Somerville, W.E.</td>
<td>34</td>
</tr>
<tr>
<td>Soulé, Hartley A.</td>
<td>1,3,4,19,22</td>
</tr>
<tr>
<td></td>
<td>35,63,70,72,73,74,76,78</td>
</tr>
<tr>
<td>Squire, H. B.</td>
<td>74</td>
</tr>
<tr>
<td>Stafford, R. S.</td>
<td>36,45</td>
</tr>
<tr>
<td>Stanton, Thomas E.</td>
<td>18,62</td>
</tr>
<tr>
<td>Steedman, E.W.</td>
<td>18,51,61,85</td>
</tr>
<tr>
<td>Stephens, A.V.</td>
<td>6,25,53,56,75</td>
</tr>
<tr>
<td>Stern, W.J.</td>
<td>85</td>
</tr>
<tr>
<td>Stevens, H.L.</td>
<td>11,12,13,14</td>
</tr>
<tr>
<td></td>
<td>30,31,50,59,67,62,63</td>
</tr>
<tr>
<td>Stieda, W.</td>
<td>45</td>
</tr>
<tr>
<td>Strother, D.H.</td>
<td>8,9,27,28</td>
</tr>
<tr>
<td>Sutton, H. A.</td>
<td>27</td>
</tr>
<tr>
<td>Suzuki, S.</td>
<td>41</td>
</tr>
<tr>
<td>Sykes, G. B.</td>
<td>63</td>
</tr>
<tr>
<td>Tanner, T.</td>
<td>79</td>
</tr>
<tr>
<td>Taylor, J. Lockwood</td>
<td>90</td>
</tr>
<tr>
<td>Thompson, Milton J.</td>
<td>8,27,96</td>
</tr>
<tr>
<td>Thoret,</td>
<td>28</td>
</tr>
<tr>
<td>Thurston, A. P.</td>
<td>98</td>
</tr>
<tr>
<td>Tiltman, A. Hessell</td>
<td>81</td>
</tr>
<tr>
<td>Tinson, C.W.</td>
<td>50,65</td>
</tr>
<tr>
<td>Toussaint, A.</td>
<td>10,23,29,54</td>
</tr>
<tr>
<td>Townend, R.H.C.</td>
<td>78,95</td>
</tr>
<tr>
<td>Trevelyan, Miss A.</td>
<td>12,31,59</td>
</tr>
<tr>
<td>Trigona della Floresta,Ercole</td>
<td>95</td>
</tr>
<tr>
<td>Tripodi, A. R.</td>
<td>39</td>
</tr>
<tr>
<td>Uwins, C. F.</td>
<td>47,54,56</td>
</tr>
<tr>
<td>Verduend, Abel</td>
<td>96</td>
</tr>
<tr>
<td>Wake, J. H. C.</td>
<td>79</td>
</tr>
<tr>
<td>Walker, C. C.</td>
<td>98</td>
</tr>
<tr>
<td>Walker, E. W.</td>
<td>19</td>
</tr>
<tr>
<td>Wallace, Rudolf</td>
<td>74,76</td>
</tr>
<tr>
<td>Warner, Edward P.</td>
<td>64</td>
</tr>
<tr>
<td>Warsap, J. H.</td>
<td>70,74</td>
</tr>
<tr>
<td>Watanabe, Y.</td>
<td>96</td>
</tr>
<tr>
<td>Waterhouse, W. J.</td>
<td>67</td>
</tr>
<tr>
<td>Watter, M.</td>
<td>27,47,58,99</td>
</tr>
<tr>
<td>Weaver, D. B.</td>
<td>12,54,59</td>
</tr>
<tr>
<td>Weaver, E. R.</td>
<td>13,32,48,64</td>
</tr>
<tr>
<td>Weick, Fred E.</td>
<td>1,3,4,5,6,7,20</td>
</tr>
<tr>
<td></td>
<td>21,22,23,24,25,45,56,70,73</td>
</tr>
<tr>
<td></td>
<td>75,76,77,78,83</td>
</tr>
<tr>
<td>Weinig, F.</td>
<td>80</td>
</tr>
<tr>
<td>Wenzinger, Carl J.</td>
<td>1,2,3,4,5</td>
</tr>
<tr>
<td></td>
<td>6,8,20,21,22,23,24,25,27,36</td>
</tr>
<tr>
<td></td>
<td>69,70,71,72,73,75,76,77,78</td>
</tr>
<tr>
<td></td>
<td>80,88,90</td>
</tr>
<tr>
<td>West, R. R.</td>
<td>101</td>
</tr>
<tr>
<td>Wetmore, J. W.</td>
<td>71,76</td>
</tr>
<tr>
<td>White, Karl H.</td>
<td>60</td>
</tr>
<tr>
<td>Wieselsberger, C.</td>
<td>9,10,28,29</td>
</tr>
<tr>
<td></td>
<td>84</td>
</tr>
<tr>
<td>Wilcox, Phillip Wakeman</td>
<td>62</td>
</tr>
<tr>
<td>Wildeblood, H. S.</td>
<td>34</td>
</tr>
<tr>
<td>Williams, B. V.</td>
<td>4,23</td>
</tr>
<tr>
<td>Williams, D. H.</td>
<td>71,72,73,82</td>
</tr>
<tr>
<td>Wing, R. N.</td>
<td>38,60</td>
</tr>
<tr>
<td>Wolff, R. V.</td>
<td>26</td>
</tr>
<tr>
<td>Wood, George F. Campbell</td>
<td>68</td>
</tr>
<tr>
<td>Wood, W. E.</td>
<td>5,24</td>
</tr>
<tr>
<td>Wright, K.V.</td>
<td>10,29,47,58,81</td>
</tr>
<tr>
<td>Wright, T.P.</td>
<td>65,98</td>
</tr>
<tr>
<td>Youngman, R.T.</td>
<td>87</td>
</tr>
<tr>
<td>Zahm, Albert Francis</td>
<td>41</td>
</tr>
<tr>
<td>Zimmerman, C.H.</td>
<td>5,45,63,73</td>
</tr>
</tbody>
</table>